The Patterson Award in New Orleans
Dual Wavelength Perfected!

- Most powerful and most stable microfocus source
- Most sensitive CCD detector
- Fast and fully-automated wavelength switch

The APEX DUO allows collection of charge density quality data with Mo radiation and exploits all the advantages of Cu wavelength for absolute structure determination and diffraction experiments on ever smaller organic crystals. Data from both wavelengths can be collected successively in one experiment and switching between wavelengths is fully automated, fast and without user intervention.

Contact us for more details and system demonstration! www.bruker.com/apexduo
American Crystallographic Association

ACA ReflexXions

Spring, 2011

ACA HOME PAGE: www.AmerCrystalAssn.org

Table of Contents

3 President’s Column
5 On the Cover
 Thank You Letter from Bernice Stewart
7 2011 ACA Council Officers and Appointments
9 ACA ReflexXions Co-Editors & Staff
 Plea for Volunteers for Opinion Column Editor
 Contributors to this Issue
 Errata
10 2011 ACA Standing Committee Members
12-14 2011 Special Interest Group Officers
15-16 2011 USNCCr Roster
16 Bernard Borie (1924 - 2010)
17 Ludo Frevel (1910-2011)
18 Corporate Members
21-23 Trueblood Award Lecture Highlights
24 Puzzle Corner
26-27 Art in Science / Science in Art
28 Exploring Science Through Food
29 History Lesson
30-31 News & Awards
32-33 Book Reviews
34-35 2011 ACA Meeting in New Orleans
36 Calendar of Meetings

Index of Advertisers

Contributions to ACA ReflexXions may be sent to either of the Editors:
Connie (Chidester) Rajnak Judith L. Flippen-Anderson
4210 Old Field Trail 3521 Launcelot Way
Kalamazoo, MI 49008 Annandale, VA 22003
tel. 269-342-1600 tel. 703-346-2441
conniechidester@earthlink.net ACAReflexXions@gmail.com

Please address matters pertaining to advertisements, membership inquiries, or use of the ACA mailing list to:
Marcia J. Colquhoun, Director of Administrative Services
American Crystallographic Association
P.O. Box 96, Ellicott Station
Buffalo, NY 14205
tel: 716-898-8692; fax: 716-898-8695
marcia@hwi.buffalo.edu

Deadlines for contributions are: February 1 (Spring), May 1 (Summer), August 1 (Fall) and November 1 (Winter)

ACA ReflexXions (ISSN 1058-9945) Number 1 2011. Published four times per year in the spring, summer, fall and winter for the membership of the American Crystallographic Association, P.O. Box 96, Ellicott Station, Buffalo, NY 14205-0096. Membership in the ACA includes a non-deductible charge of $1.75 from membership dues to be applied to a subscription ACA ReflexXions. Periodicals postage paid at Buffalo, New York. POSTMASTER: Send address changes to ACA, P.O.Box 96, Ellicott Station, Buffalo, NY, 14205-0096.
The X8 PROSPECTOR is an exceptionally low maintenance X-RAY system designed to simplify crystal screening and data collection. The X8 PROSPECTOR has the reliability, speed and performance to make any structural biology lab more productive.

Contact us for more details and system demonstration! www.bruker.com/x8prospector
When I attended my first ACA meeting some forty years ago I never dreamt that one day I would be writing this column as your President. It’s truly a privilege for me to be able to serve the ACA, which I have regarded as my scientific home ever since that time when I was a brand-new postdoc.

By coincidence, that first ACA meeting I attended back in 1970 was held in New Orleans – a wonderful site and also the venue for this year’s annual meeting, which will take place from May 28 through June 2, 2011. Your New Orleans Program Chair Chris Cahill is planning an outstanding scientific program. Highlights will include a full-day ACA Transactions Symposium, Time-Resolved Studies and Photochemistry (AM) and Charge Density (PM), on Monday, May 30. Inspired by the research of former IUCr and ACA President Philip Coppens, the Transactions Symposium is cosponsored by the Small Molecule, Synchrotron, and General SIGs. ACA’s Canadian Division is planning a session on Evolution of Powder Diffraction Software in honor of their late colleague Lachlan Cranswick. Also featured in New Orleans will be the presentation of the 2011 Patterson Award to Keith Moffat, the 2011 Wood Science Writing Award to Daniel Nocera, and the 2010 Trueblood Award to David Watkin. David unfortunately was unable to join us last summer in Chicago, and we are very pleased that he plans to be with us in New Orleans to receive his award. See page 34 in this issue for additional information on the exciting program planned for New Orleans.

As Judy Kelly reported in this space in the winter 2010 Reflexions, last October Council decided to change the format of our annual meetings and to go from a five-day (Sunday-Thursday) meeting format with four parallel sessions each morning and afternoon to a four-day (Sunday-Wednesday) meeting format with five parallel sessions each half day. The Saturday prior to the start of the meeting will as usual be set aside for workshops. Our 2012 Boston meeting will be our first meeting to use the new, shorter format. Controlling costs, along with time savings for our members, were important factors in Council’s decision to opt for the shorter meeting format.

2011 promises to be a very exciting year for ACA and for crystallography. In addition to our New Orleans ACA meeting, the XXII IUCr Congress and General Assembly will take place in Madrid, Spain, August 22-30, 2011, and many of us are looking forward to seeing our international colleagues in Madrid. ACA milestones for 2011 will include the selection of the first group of Fellows, who are in the process of being chosen by Council under the new ACA Fellows Program. We will keep you posted on this and other developments as the year goes forward.

This year we welcome three new members on the ACA Council. Our incoming Vice-President is George Phillips, and David Rose returns as our Canadian Representative. Jamaime Davis joins Council as an ex-officio, non-voting member representing the Young Scientists’ YSSIG. Two Council members have completed their terms in 2010: Past-President Bob von Dreele, and Canadian Representative Jim Britten. ACA is extremely grateful to Bob and Jim for their years of service.

On a personal note, I want to add my thanks to all of our colleagues on Council including especially my predecessor as President, Judy Kelly, for their work and dedication. My own job this year will, no doubt, be much easier because of all of their outstanding efforts.

ACA’s success is, of course, due in large measure to our extremely dedicated professional staff in the Buffalo Headquarters: Director of Administrative Services Marcia Colquhoun, Membership Secretary Crystal Towns and, in the past, former staff members Patti Potter and Jen Shepard. Every year at our annual meeting, I’m sure that we’re all impressed by the hard work over many long hours that the staff puts in to make sure everything runs smoothly. Of course, their demanding work goes on behind the scenes year round. While we on the Council rotate through our positions, it is the ACA’s staff that provides continuity and enables ACA to be such an invaluable resource for you, our members. We all owe Marcia and Crystal a tremendous vote of thanks!

As I write this, early in February from snowy New York, our spring meeting in New Orleans looks especially attractive. We hope that as many of you as possible will attend. The ACA has worked hard to keep costs down, so don’t forget to register by March 31, the early deadline. The booking deadline for the conference rate at the Sheraton New Orleans is April 15. A limited number of specially discounted hotel rooms is available for students and postdocs, on a first-come, first-served basis – so please be sure to get your reservations in early.

See you in New Orleans.

Tom Koetzle

Cartoon courtesy of Nick D. Kim. Nick Kim is an analytical environmental chemist currently working for the Waikato Regional Council. He is an honorary lecturer at the University of Waikato in New Zealand.

Know your dog: Canine osteoarthritis
Mix and dispense LCP with the new Gryphon LCP.

- **MIX LCP**
 Set the LCP mix speed and time, then let the Gryphon mix your sample.

- **DISPENSE LCP**
 Dispense LCP down to 25 nL with less than 5% CVs.

- **DISPENSE BUFFERS**
 Dispense 96 buffer solutions at one time.

- **SEAL PLATE**
 A 96 reaction plate is ready to seal in less than 2 minutes.

www.artrobbins.com
Thank You Letter from Bernice Stewart

Kudos to the three individuals who composed the memorials of Jim Stewart which were published in the winter issue of Reflexions. Bruno Morosin, Winnie Wong-Ng and Syd Hall collectively captured the essence of my late husband’s attributes and interests. Their memories of Jim honor him and deserve to be acknowledged, my reason to thank all of them for their splendid write-up.

It goes without saying that Jim was a pioneer with his farsighted recognition of the need for transportable programs so that crystallographers would no longer be strapped to the restrictions imposed on them by the diversity of existing software systems. His enthusiasm for computing and the fun he had with it was contagious to his collaborators to whom he always gave credit first, short changing himself in this act. He excelled as a teacher, was an avid environmentalist, read widely - such that after 57 years of marriage my mind would still be boggled by the extensive amount of information he had stored on any subject. He was always able to find common ground to start an interesting conversation with anyone he met.

His graduate students adored him and he would always “adopt” them as part of our family. Saturdays would be oil changing day in our back yard along with lessons about how to repair minor glitches in their cars (always the teacher!). I would prepare lunch for the participants and we would eat together as a family.

Above all, Jim was a non-pretentious man, totally lacking in signs of arrogance. I always told him that instead of McDonald’s middle name should have been McHumble. Need I say more. Again I thank the three contributors to Jim’s memories for their most favorable assessments of this wonderful and unique person. I was fortunate to have had him in my life.

Bernice Stewart

Images from 2011 Patterson Award winner, Keith Moffat

The lower right image shows the crystal structure of the Q188L mutant of PaBphP-Photosensory Core Module from a PNAS article by Xiaojing Yang, Jane Kuk, and Keith Moffat.1 Its ribbon diagram is colored by the main-chain rmsd values between the structures of Q188L [Protein Data Bank ID 3G60] and PaBphP-PCM wild type (PDB ID 3C2W). The other two images are from the supporting information for the same article. The view at left shows the molecular packing of PaBphP-PCM-Q188L in the crystal lattice in space group P65. The core of the PHY domains (blue) and their arm regions (red) form a cylindrical solvent channel centered along the 65 screw axis, resulting in disorder and therefore poor side-chain density in the PHY domain. The PAS and GAF domains and all helical bundles are colored in green. The image at upper right shows the global structural differences between the same PDB ID 3C2W wild type (green) and a magenta colored cyanobacterial phytochrome from Synechocystis species 6803.2 Cph1-PCM (PDB ID 2VEA), specifically the long helical bundles at the dimer interface.

Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria by means of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. The Q188L mutant of the Pseudomonas aeruginosa bacteriophytochrome (PaBphP)-PCP exhibits altered photoconversion behavior and different crystal packing from the wild type. Two distinct chromophore conformations in the Q188L crystal structure were observed that were identified with the Pfr and Pr states. The Pr/Pfr compositions, varying from crystal to crystal, seem to correlate with the light conditions under which the Q188L crystals are cryoprotected. All known Pr and Pfr structures were compared and using site-directed mutagenesis residues were identified that are involved in stabilizing the 15Ea (Pfr) and 15Za (Pr) configurations of the biliverdin chromophore. Specifically, Ser-261 appears to be essential to form a stable Pr state in PaBphP, possibly by means of its interaction with the propionate group of ring C of the bilin chromophore. A “flip-and-rotate” model was proposed that summarizes the major conformational differences between the Pr and Pfr states of the chromophore and its binding pocket.3

Static crystallographic studies of signaling photoreceptors such as phytochromes are an essential precursor to time-resolved studies. Such studies will explore the questions: how is the signal generated by absorbing a photon of red or far-red light transmitted from the chromophore, across the chromophore binding domain and ultimately to the output domain (not shown in these structures), a histidine kinase? How is the activity of the kinase thereby modified? In short, how do these signaling photoreceptors really work?

References:
1. X. Yang, J. Kuk and K. Moffat (2009), Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome, Proc Natl Acad Sci USA 106, 15639-44. 2. L.O. Essen, J. Mailliet, J. Hughes, (2008) The structure of a complete phytochrome sensory module in the Pr ground state, Proc Natl Acad Sci USA 105, 14709-14. (3) This paragraph was adapted from text in (1).
...what a breath of fresh air

Allow us to introduce the DTC.

For uncomplicated sample cooling, the Desktop Cooler (DTC) is hard to beat. The DTC refrigeration unit and a dry air source; that is all that’s required to deliver a cold gas stream with a temperature range of 170 Kelvin to room temperature.

The mechanical cooler does not require a separate helium compressor, which means that cooling water is not required and maintenance is reduced to virtually zero. The DTC is simple to set up and control and can be left running for weeks at a time.

Certainly, for those working within this temperature range, the DTC offers convenient and simple cooling at an attractive price.

Now isn’t that a breath of fresh air?

For further information on the DTC visit www.oxcryo.com
ACA COUNCIL OFFICERS -2011

PRESIDENT
Tom Koetzle
35 Arista Dr
Dix Hills, NY 11746
631 219 7312
Fax: 631 980 4366
tkoetzle@aol.com

VICE PRESIDENT
George Phillips
Dept of Biochemistry
U Wisconsin Madison
433 Babcock Dr
Madison, WI 53706
608 263 6142
Fax: 608 263 6142
phillips@biochem.wisc.edu

PAST PRESIDENT
Judith A Kelly
113 Uncle Sam Rd
Phippsburg, ME 04562
207 389 9058
judith.kelly@uconn.edu

TREASURER
Bernie Santarsiero
M/C-870. Ctr For Pharm Biotech
U Illinois Chicago
3100-MBRB
900 S Ashland Ave
Chicago IL 60607
312 413 0339
Fax: 312 413 9304
bds@uic.edu

SECRETARY
Carrie Wilmot
Biochem, Mol Bio & Biophys
6-155 Jackson Hall
U. Minnesota
321 Church St SE
Minneapolis, MN 55455
612 624 2406
wilmo004@umn.edu

CHIEF EXECUTIVE OFFICER
William L. Duax
Hauptman-Woodward Medical Res Inst
700 Ellicott St.
Buffalo, NY 14203-1196
716 898-8616
duax@hwi.buffalo.edu

CANADIAN REPRESENTATIVE
David Rose
Dept of Biology
Univ of Waterloo
200 Univ. Ave W
Waterloo ON
Canada, N2L 3G1
519 888 4567
drrose@uwaterloo.ca

VICE PRESIDENT
CANADIAN REPRESENATIVE
Can. COUNCIL OFFICERS -2011

George Phillips
Dept of Biochemistry
U Wisconsin Madison
433 Babcock Dr
Madison, WI 53706
608 263 6142
Fax: 608 263 6142
phillips@biochem.wisc.edu

PAST PRESIDENT
Judith A Kelly
113 Uncle Sam Rd
Phippsburg, ME 04562
207 389 9058
judith.kelly@uconn.edu

TREASURER
Bernie Santarsiero
M/C-870. Ctr For Pharm Biotech
U Illinois Chicago
3100-MBRB
900 S Ashland Ave
Chicago IL 60607
312 413 0339
Fax: 312 413 9304
bds@uic.edu

SECRETARY
Carrie Wilmot
Biochem, Mol Bio & Biophys
6-155 Jackson Hall
U. Minnesota
321 Church St SE
Minneapolis, MN 55455
612 624 2406
wilmo004@umn.edu

EX-OFFICO
Jamaine Davis,
YSSIG Chair
Macromolecular Crystallography Lab, NCI
1050 Boyles St
Bldg 539/145
Frederick MD 21702
davijama@mail.nih.gov

CANADIAN DIVISION

Michael Murphy Chair
Microbio & Immunol
U British Columbia
2350 Health Sciences
Vancouver BC
Canada, V6T 1Z3
604 822-8022
Michael.Murphy@ubc.ca

Pawel Grochulski, Secretary
Canadian Light Source
U Saskatchewan
101 Perimeter Rd
Saskatoon, SK
Canada, S7N 0X4
306 657 3538
pawel.grochulski@lightsource.ca

DIRECTOR OF ADMINISTRATIVE SERVICES
Marcia Colquhoun
ACA, P.O. 96 Ellicott Station
Buffalo, NY 14205-0096
716 898 8692
Fax: 716 898 8695
marcia@hwi.buffalo.edu

MEMBERSHIP SECRETARY
Crystal Towns
ACA, P.O. 96 Ellicott Station
Buffalo, NY 14205-0096
716 898-8693
Fax: 716 898-8695
ctowns@hwi.buffalo.edu

APPOINTMENTS

CHIEF FINANCIAL OFFICER
S.N. Rao,
4507 E Chuckwalla Canyon
Phoenix, AZ 85044
405 204-9648 (cell)
480 306-5554
deanrao@gmail.com

IUCr REPRESENTATIVE
Marvin Hackert
Dept of Chem & Biochem
U Texas Austin
1 Univ. Station A5300
Austin, TX
512 471 1105
m.hackert@mail.utexas.edu

IUCr REPRESENTATIVE

Michael Murphy Chair
Microbio & Immunol
U British Columbia
2350 Health Sciences
Vancouver BC
Canada, V6T 1Z3
604 822-8022
Michael.Murphy@ubc.ca

Pawel Grochulski, Secretary
Canadian Light Source
U Saskatchewan
101 Perimeter Rd
Saskatoon, SK
Canada, S7N 0X4
306 657 3538
pawel.grochulski@lightsource.ca

DIRECTOR OF ADMINISTRATIVE SERVICES
Marcia Colquhoun
ACA, P.O. 96 Ellicott Station
Buffalo, NY 14205-0096
716 898 8692
Fax: 716 898 8695
marcia@hwi.buffalo.edu

MEMBERSHIP SECRETARY
Crystal Towns
ACA, P.O. 96 Ellicott Station
Buffalo, NY 14205-0096
716 898-8693
Fax: 716 898-8695
ctowns@hwi.buffalo.edu

MEMBERSHIP SECRETARY
PILATUS 2-D detector systems

PILATUS detector systems are based on CMOS hybrid-pixel technology and deliver outstanding results in various applications. A wide range of models ensures that a suitable PILATUS detector can be chosen for every measurement.

MYTHEN 1-D detector systems

MYTHEN is a one dimensional silicon strip detector system, which can be combined to form multi-detector arrays covering large angles (MYTHEN 6K).

XBPM Beam Position Monitors

XBPM4 is a 4-quadrant x-ray beam position monitor based on CVD diamond technology, suitable for hard x-ray synchrotron beam lines.
The Reflexions editors, Judy and Connie are hoping someone will volunteer for the position of

Opinions Column Editor

In the past our Opinions columns have featured two subjects: Intelligent Design / the Evolution debates and Global Warming. We can supply sources for both of these, and the column could consist of updates from these sources - or - the Opinions editor could choose another subject and put together something different. Please contact Connie Rajnak (conniechidester@earthlink.net) or Judy Flippen-Anderson (acareflexions@gmail.com).

Contributors to this Issue

Abrahams, Sidney; Bernstein, Frances; Cahill, Chris; Colquhoun, Marcia; Einspahr, Howard; Ferrara, Joe; Flippen-Anderson, Judy; Forest, Katrina; Grossman, Bathsheba; Hazeltine, Mara; Kim, Nick D.; Klein-Stevens, Cheryl; Koetzle, Tom; Kuk, Jane; Meyer, Edgar; Moffett, Keith; Muller, Peter; Ferreras, Ana; Rose, David; Rubin, Byron; Sarjeant, Amy; Spek, Ton; Stevens, Ed; Voss-Andreae, Julian; Yang, Xiaojing; Yu, Bomina.

Errata: from Sidney Abrahams: It should, of course, have been sca@mind.net but appeared as sca@mind.ne
Communications

Allen Oliver, Chair (08-11)
Dept of Chemistry
Univ of Notre Dame
251 Nieuwland Science Hall
Notre Dame, IN 46556
574 631 5935
aoliver2@nd.edu

Thomas Proffen (09-12)
Los Alamos National Laboratory
Manuel Lujan Jr Neutron Scat Ctr
LANSE-12, MS H805
Los Alamos, NM 87545
505 665 6573
tproffen@lanl.gov

Ross Angel (10-13)
Dept of Geological Science
Virginia Tech
Blacksburg VA 24060
540 231 7974
rangel@vt.edu

Stephan Ginell (11-14)
Biological Sciences
Argonne National Lab
9700 S Cass Ave
Argonne IL 60439
630-252-3972
Ginell@anl.gov

Continuing Education

Peter Müller, Chair (08-11)
Dept Chemistry
Bldg 2 Rm 325, MIT
77 Massachusetts Ave
Cambridge MA 02139
617 253 1884
pmueller@mit.edu

Katrina T. Forest (11-12)
6552 Microbial Sciences Building
1550 Linden Drive
Madison, WI 53706
(608) 265-3566
Forest@bact.wisc.edu

Jeanette A. Krause (11-14)
PO Box 19159
Cincinnati OH 45219-0159
513 556 9226
jeanette.krause@uc.edu

Frank Fronczek (10-13)
Dept Chemistry
Louisiana State Univ
Baton Rouge LA 70803-1804
225 578 8270
ffroncz@lsu.edu

Data, Standards & Computing

David Harrison (08-11)
Biochemistry & Molecular Biology
Rosalind Franklin Univ Med & Science
3333 Green Bay Rd
Chicago IL 60604
847 578 8609
david.harrison@rosalindfranklin.edu

John Rose (09-12)
Biochemistry & Mol Biology
Univ of Georgia
120 Green St. B204B Life Science Bldg.
Athens, GA 30602
706 542 1750
rose@bc14.bmb.uga.edu

Cora Lind (10-13)
Dept Of Chemistry
Univ of Toledo
3806 Woodmont Rd
Toledo OH 43613
419 530 1505
cora.lind@utoledo.edu

Joseph Reibenspies (11-14)
Dept of Chemistry MS3255
Texas A & M Univ
College Station TX 77843
979 845 9125
j-reibenspies@tamu.edu
For characterizing protein-protein interactions, only the Calypso™ does it all.

No other biophysical method for quantifying macromolecular interactions provides as broad a range of analyses as Wyatt’s Calypso. Using Composition-Gradient Multi-Angle Light Scattering (CG-MALS), Calypso gives you label-free, in-solution characterization of equilibrium and kinetic properties, hetero- and homo-association, binding affinity from picomolars to millimolars, stoichiometries of associating complexes, aggregation and self-assembly, and also measures non-specific interactions. So whether you’re conducting formulation studies, developing drugs, or performing fundamental biomolecular research, the tools you need can be found in one handy place: Wyatt.com/Calypso.

©2009 Wyatt Technology. Calypso is a registered trademark of Wyatt Technology Corporation.
SPECIAL INTEREST GROUP OFFICERS 2011

Biological Macromolecules

John Rose Chair
Biochemistry & Mol Biology
Univ of Georgia
120 Green St. B204B Life Science Bldg.
Athens, GA 30602
706 542 1750
rose@bc14.bmb.uga.edu

Eric Ortlund, Chair-elect
Dept. of Biochemistry
Emory Univ.
1510 Clifton Rd
Atlanta, GA 30322
eric.ortlund@emory.edu

Zachary Wood, Sec/Treas.
Biochemistry & Molecular Biology
Univ. of Georgia
120 Green St.
B204B Life Science Bldg.
Athens GA 30602
zac@bmb.uga.edu

Fiber Diffraction

Paul Langan, Chair
Dept of Biol Sci., M888
Los Alamos National Laboratory
Los Alamos, NM 87545
505 665 8125
langan_paul@lanl.gov

Olga Antipova, Chair-elect
Illinois Inst of Technology
3300 S. Federal St
Chicago, IL 60616
312 567 6824
olga.antipova@gmail.com

Thomas Irving, Sec’y (11-12)
Dept. Biol Chem & Physics Sci
Illinois Inst of Technology
3101 S Dearborn
Chicago, IL 60616
irving@iit.edu

General Interest

Marilyn Olmstead, Chair
Dept of Chemistry
Univ of California Davis
One Shields Ave
Davis CA 95616
530 752 6668
olmstead@chem.ucdavis.edu

Allen Oliver, Chair-elect
Dept of Chemistry
Univ of Notre Dame
251 Nieuwland Science Hall
Notre Dame, IN 46556
aoliver2@nd.edu

Peter Müller, Sec’y
Dept Chem Bldg 2 Rm 325
MIT, 77 Massachusetts Ave
Cambridge, MA 02139
617 253 1884
pmueller@mit.edu

Industrial

Paul N Swepton, Chair
Rigaku Americas Corp
9009 New Trails Dr
The Woodlands TX 77381-5209
281 362 2300
paul.swepton@rigaku.com

Stephen Burley, Chair-elect
Eli Lilly Co.
Lilly Biotechnology Center
10300 Campus Pt Dr Ste 200
San Diego CA 92121
sburler@lilly.com

Jeff Bell, Secretary
Schrodinger Inc
120 West 45th St 29th Fl
New York, NY 10036
646 366 9555
jeffery.bell@schrodinger.com
Materials Science

James A Kaduk, Chair
Poly Crystallography Inc.
423 E Chicago Ave
Naperville IL 60540
630 605 0274
kaduk@polycrystallography.com

Yuriy Mozharivskyj, Chair-elect
Dept. Chem & Chem Biology
McMaster Univ
1280 Main St W
Hamilton ON L8S 4M1 CANADA
mozhar@mcmaster.ca

Angus Wilkinson, Past Chair
Dept Chem & Biol Chem
Georgia Inst of Technology
Atlanta, GA 30332-0400
404 874 4036
angus.wilkinson@chemistry.gatech.edu

Powder Diffraction

Peter Stephens, Chair
Dept of Physics & Astronomy
State Univ of New York Stony Brook
Stony Brook NY 11794-3800
631 632 8156
peter.stephens@sunysb.edu

Greg Halder, Chair-elect
X-ray Science Division
Argonne National Lab
9700 S Cass Ave Bldg 433
Argonne IL 60439
halder@aps.anl.gov

Peter Chupas, Past Chair
X-Ray Science Division
Argonne National Lab
9700 S Cass Ave Bldg 433
Argonne, IL 60439
chupas@anl.gov

Neutron Scattering

Christina Hoffmann, Chair
Spallation Neutron Source
Oak Ridge National Lab,
PO Box 2008
Oak Ridge TN 37831-6475
hoffmanncm@ornl.gov

Clarina de la Cruz, Chair-elect
Neutron Scattering Science Div
Oak Ridge National Lab
1 Bethel Valley Rd
PO Box 2008, MS 6430
Oak Ridge TN 37831
delacruzcr@ornl.gov

Craig Bridges, Past Chair
Chemical Sciences Division
Oak Ridge National Lab
P.O. Box 2008, MS6100
Oak Ridge, TN 37831
865 574 6511
bridgesca@ornl.gov

Service Crystallography

Amy Sarjeant, Chair-elect
Dept of Chemistry
Northwestern Univ
2145 Sheridan Rd
Evanston IL 60208
847-467-1738
asarjeant@northwestern.edu

Louise Dawe, Chair-elect
Dept of Chemistry
Memorial Univ of Newfoundland
Elizabeth Ave
St. John's NL A1B 3X7 CANADA
louise.dawe@mun.ca

James Fettinger, Sec'y/Treas.
Dept of Chemistry
Univ of California Davis
David, CA 95618
jcfettinger@ucdavis.edu
Small Angle Scattering

Byeongdu Lee, Chair-elect
Advanced Photon Source
Argonne National Lab
9700 S Cass Ave Bldg 433E006
Argonne IL 60439
blee@aps.anl.gov

Tadanori Koga, Chair-elect
Dept Mat Sci & Engineering
SUNY Stony Brook
Old Engineering Bldg Rm 318
Stony Brook, NY 11794-2275
tkoga@notes.cc.sunysb.edu

Kenneth Littrell, Sec'y/Treas.
HFIR/NSSD
Oak Ridge National Laboratory
1 Bethel Valley Road
Oak Ridge, TN, 37831-6393
littrellkc@ornl.gov

Greg Beaucage, Member at Large
Chemical & Material Engineering
Univ of Cincinnati
401 Rhodes Hall
Cincinnati OH 45221-0012
gbeaucage@gmail.com

Small Molecules

Gary Nichol, Chair
Dept of Chemistry
Univ Of Arizona
1306 E University Blvd
Tucson AZ 85721
520 621 4168
gsnichol@email.arizona.edu

Shao-Liang Zheng Chair-elect
Dept Chem & Chem Biol
Harvard Univ
12 Oxford St
Cambridge MA 02183
zheng@chemistry.harvard.edu

Peter Müller, Sec/Treas
Dept Chem Bldg 2 Rm 325
MIT
77 Massachusetts Ave
Cambridge, MA 02139
pmueller@mit.edu

Synchrotron Radiation

Henry D Bellamy, Chair
CAMD/LSU
6980 Jefferson Hwy
Baton Rouge LA 70806
225 578 9342
hbellamy@lsu.edu

Craig Ogata, Chair-elect
GMCA Bldg 436D
Argonne National Lab
9700 S Cass Ave
Argonne IL 60439
ogata@anl.gov

Mark Allaire, PastChair
National Synchrotron Light Source
Brookhaven Nat'l Lab
Bldg. 725D
Upton, NY 11973-5000
allaire@bnl.gov

Young Scientists

Jamaine Davis, Chair
Macromolecular Cryst. Lab
National Cancer Inst
1050 Boyles St Bldg 539/145
Frederick MD 21702
301 846 5326
davijama@mail.nih.gov

Eric Montemayor, Chair-elect
Dept of Biochemistry
Univ of Texas Health Science Ctr
at San Antonio
7703 Floyd Curl
San Antonio TX 78229
montemayor.eric@gmail.com

Andrew Torelli
Chemistry & Chemical Biology
Baker Lab
Cornell Univ.
Ithaca, NY 14853-1301
att29@cornell.edu
2011 US NATIONAL COMMITTEE FOR CRYSTALLOGRAPHY

Chair

KATHERINE KANTARDJIEFF (11)
Dept of Chem & Biochem
California State U, Fullerton
800 N. State College
Fullerton, CA
92834-9480
714 278 3752
kkantardjieff@fullerton.edu

Claudia J. Rawn (11)
Dept Materials, Sci & Eng
Univ Tennessee
609 Dougherty Bldg
Knoxville, TN 37996
865 574 3184
crawn@utk.edu

Josef Reibenspies (12)
Texas A&M Univ.
Dept. Chemistry
College Station, TX
77842
979-845-9125;
J-reibenspies@tamu.edu

Bernerhard Rupp (13)
Q.E.D. Life Sci Discov Inc
6487 Half Dome Court
Livermore, CA 94551
955-209-7429
br@ qedlife.com

Amy Serjeant (13)
Northwestern University
Dept of Chemistry
2145 Sheridan Road
Evanston, IL 60208
847-467-1738
asarjeant@northwestern.edu

Steven Sheriff (13)
Bristol Myers-Squibb
Res. & Development
US Route 206 &
Provinceline Road
P.O. Box 4000
Princeton, NJ, 08543
609-252-5934
steven.sheriff@bms.com

Peter Stephens (13)
Stony Brook University
Dept Phys & Astronomy
B-134 Physics Building
Stony Brook, NY 11794
631-632-8165
peter.stephens@stonybrook.edu

Jennifer Swift (11)
Georgetown Univ
Dept Chem 647 Reiss
37th and O Streets NW
Washington, DC 20057
202 687 5567
jas2@georgetown.edu

Angus P. Wilkinson (11)
Georgia Inst Tech
Dept Chem & Biochem
901 Atlantic Drive 1100J
Atlanta, GA 30332-0400
404 894 4036
angus.wilkinson@chemistry.gatech.edu

Victor G. Young Jr. (11)
Dept of Chem
Univ of Minnesota
160 Kolthoff Hall
207 Pleasant St SE
Minneapolis, MN 55455
612 625 6897
young@chemsun.chem.umn.edu

Ex-Officio Voting Members
See ACA Officers Roster for addresses.

Thomas Koetzle
ACA President

George Phillips
ACA Vice-President

Bernard D. Santarsiero
ACA Treasurer

Secretory-Treasurer

Cora Lind (12)
Chemistry Dept
2262 WO
Univ Toledo
Toledo, OH 43606-3390
419-530-1505
cora.lind@utoledo.edu

Members

Gloria Borgstahl (12)
Eppley Inst, for Research in Cancer,
U. Nebraska Med. Ctr.
Omaha, NE
68198-5950
402-559-8578
gborgstahl@unmc.edu

Christopher Cahill (12)
George Washington U.
Dept Chemistry
725 21st Street NW
Washington, DC 20052
202 994 6959
cahill@gwu.edu

Joseph Ng (12)
Dept Biol Science
Biol.Science WH 254
U.Alabama-Huntsville
Huntsville, AL 35899
256-824-3715
ngj@email.uah.edu

USNCCr Roster cont’d next page
Bernard (Bernie) Simon Borie Jr. died 30 November 2010 at the age of 86. Borie was widely recognized for his pioneering work on diffuse x-ray scattering theory and in particular for the Borie-Sparks method of determining chemically-specific atomic displacements in short-range-ordered alloys. He received his BS in Electrical Engineering from the University of Louisiana Lafayette, and, following service in the United States Navy during World War II, obtained an MS in Physics at Tulane University and a PhD in Physics at MIT. Bernie studied under B. E. Warren at MIT and remained a strong advocate of the “Warren approach” throughout his career. His work was distinguished by clarity and elegance. When writing his popular book on x-ray diffraction, Warren solicited help from students and former students to write the chapter on dynamical diffraction. Bernie Borie’s eminently accessible extension of the Darwin method was selected over the more traditional methods summarized in the classic dynamical diffraction review by Batterman and Cole.

After graduating from MIT, Bernie completed a Fulbright Fellowship at the University of Paris and then hired into the Metals and Ceramics Division of the Oak Ridge National Laboratory where he served as group leader of the X-ray Diffraction Group. At Oak Ridge, his work on diffraction theory provided insights into materials structure/property relations. Materials systems of interest included short-range ordered TiZr, CuAl, and CuAu alloys as well as oxide thin films. Throughout his career he pushed the frontiers of diffraction theory with an abiding interest in thermal and static displacements and in methods to accurately extract this information from x-ray diffraction patterns. For example, the Borie-Sparks theory of diffuse x-ray scattering grew from earlier work by Borie that exploited distinct symmetry in the diffraction pattern of short-range-ordered alloys arising from chemical order and chemically-specific static displacements. By assuming that the atomic form factor had weak momentum transfer dependence the Borie-Sparks method was able to use 3 dimensional reciprocal-space maps to recover static displacements in binary alloys. These methods are still used at neutron facilities and were later extended with anomalous scattering methods made practical by the emergence of synchrotron x-ray sources.

In addition to his pioneering work on x-ray diffraction theory, Bernie was a gifted teacher, and taught x-ray diffraction theory internally at ORNL, at the University of Tennessee, and as a visiting professor at Cornell and U.C. Berkeley. Ultimately Bernie Borie’s pioneering approaches for the analysis of diffuse x-ray scattering data and his clear writing and teaching have inspired research that continues to the present day.

2011 USNCCr cont'd

Subcommittee on Interdisciplinary Activities (non-voting members)

SCOTT MISTURE (11)
ICDD Representative
Alfred Univ.
misture@alfred.edu

BART KAHR
American Association for Crystal Growth
New York University
bart.kahr@nyu.edu

PAUL VOYLES (11)
Microscopy Society of America
Univ. of Wisconsin
voyles@engr.wisc.edu

Ex-Officio

(non-voting members)

C. Dale Poulter (6/2011)
(NAS) BCST Co-Chair
Univ of Utah
801-581-6685
poulter@chemistry.utah.edu

Ryan Dirky (6/2011)
(NAS) BCST Co-Chair
R & D, Arkema Inc
215-826-2600
ryan.dirky@arkemagroup.com

Michael Clegg
NAS Foreign Secretary
Univ California at Irvine
949-824-4490
mclegg@uci.edu

Ana Ferreras
Staff Officer, NAS
202 334-1697
aferreras@nas.edu

Pam Gamble
Admin. Assistant, NAS
202-334-2688
pgamble@nas.edu

Preservation Hall celebrates its Golden Anniversary throughout the year 2011. Courtesy of the City of New Orleans: Preservation Hall ©.
It is with great sadness that we report the death of one of our dearest ICDD friends and founding fathers, Ludo Frevel. He passed away on Saturday, 15th January, 2011, at Bickford Cottage of Midland, Michigan. Born in Frankfurt, Germany, 31st May, 1910, Ludo recently joined the rank of “Centenarian”, celebrating his 100th birthday among friends and family.

Ludo earned a doctorate in physical chemistry from Johns Hopkins University, followed by two years of study at the California Institute of Technology with structural chemist and Nobel laureate, Linus Pauling. He joined Dow’s Spectroscopy Laboratory in 1936, where he worked as one of Dow’s pioneer chemists for 39 years. Upon retirement, he was one of Dow’s top scientists and was the first Dow scientist to have the title Research Specialist. Until 2005, he served as a consultant to Dow Corning Corporation. He held 60 patents and authored or co-authored 446 technical papers, publishing his most recent paper at age 95.

Ludo’s work in x-ray powder diffraction and catalysis, particularly in the petrochemical industry, is known worldwide. He was also recognized for his method of purifying ethylene to make polyethylene. However, the accomplishment he was most proud of was his work on the purification of butadiene for synthetic rubber.

Ludo’s association with the ICDD spanned many decades. His pioneering work began with his vital contributions to the 1938 Hanawalt, Rinn and Frevel paper entitled, Chemical Analysis by X-ray Diffraction - Classification and Use of X-ray Diffraction Patterns, published in the Analytical Edition of Industrial and Engineering Chemistry. This work, which supplied tabulated diffraction data for 1,000 chemical substances and included the indexing and comparison methods for identifying materials, is considered by most diffractionists to be the classic work in qualitative identification of multiphase polycrystalline materials. This work directly lead to the creation of the Powder Diffraction File™, and the tabulated data were the genesis of Set 1, published in 1941.

As an active member, Ludo served the ICDD in many capacities. He published one of the first papers on the use of computers in both the searching and matching steps of crystalline phase identification. From 1978 through 1996, he assumed various leadership roles by serving as a member of the Board of Directors; as such, he performed the duties of Member-at-Large, Consultant to the Board, Chairman, and Past Chairman.

Over the years, Ludo was honored for his contributions to the x-ray analysis field as well as those to the ICDD. The ICDD established the J.D. Hanawalt Award for excellence in powder diffraction in the early 1980s. Ludo was named as the first recipient - a title well deserved! For his long and meritorious service to the ICDD, Ludo was designated as an ICDD Distinguished Fellow in 1984.

Ludo’s commitment to the education of young scientists was exemplified in his establishment of the Crystallography Scholarship Program. To encourage promising graduate students to pursue crystallographically oriented research, he founded the Crystallography Scholarship Program in 1991. Administered by the ICDD, the program’s name was changed in 2000 to honor Ludo as its founder. In addition, Ludo contributed significantly to the scholarship fund and actively solicited funding from private and academic sectors to sustain the program. As of January 2011, the Ludo Frevel Crystallography Scholarship Program has awarded 122 scholarships totaling over $282,000. During his lifetime, Ludo mentored many scientists especially those working in x-ray diffraction at both The Dow Chemical Company and Dow Corning. Those who had the pleasure of working with Ludo remember him for his brilliant mind and passion for science. He was always willing to teach others, share ideas, and discuss methods, with a wonderful combination of gentleness and enthusiasm.

Ludo is survived by his three children, Mary (Kadish), Gordon, and Kurt; two grandchildren, Lesley Kadish, and Laura McCownville; and two great-grandchildren, Hayden, and Maxwell. He was preceded in death by wife, Ruth; parents, Ludwig and Carrie; and his brothers, Raoul and Karl.

reprinted from the ICDD Newsletter, Vol 9 Issue 1
We gratefully acknowledge the continued support of ACA CORPORATE MEMBERS and welcome new members.

Agilent Technologies www.agilent.com

Anachem Instruments, Ltd. www.anachem-instruments.co.uk/

Area Detector Systems Corp. www.adsc-xray.com

Art Robbins Instruments www.artrobinstruments.com

ATPS Inc. www.atpsinc.com

Axxora LLC www.axxora.com

Blake Industries, Inc. blake4xray@worldnet.att.net

Bruker AXS www bruker-axs.com

Cambridge Crystallographic Data Centre www.ccdc.cam.ac.uk

Charles Supper Company, Inc. www.charles-supper.com

Cryo Industries of America, Inc. www.cryoindustries.com

Dectris Ltd. www.dectris.com

Douglas Instruments Limited www.douglas.co.uk

Emerald Biosystems www.emeraldbiostructures.com

FMP Products www.fmpharma.com

Hampton Research www.hamptonresearch.com

Hecus X-Ray Systems GmbH www. hecus.at

Incoatec GmbH www.incoatec.de

Int’l Ctr For Diffraction Data www.icdd.com

Jena Bioscience GmbH www.jenabioscience.com

Korima, Inc. www.korimainc.com

MiTeGen LLC www.mitegen.com

Molecular Dimensions, Inc. www.moleculardimensions.com

Nexus Biosystems www.nexusbio.com

Oxford Cryosystems, Inc. www.oxfordcryosystems.com

Rayonix LLC www.rayonix.com

RCSB-Protein Data Bank www.rcsb.org/pdb

Rigaku Americas Corp. www.Rigaku.com

TTP LabTech Ltd www.ttplabtech.com

West Bond Inc www.westbond.com

Wyatt Technology www.wyatt.com

Xenocs SA www.xenocs.com

Annual Meeting Sponsors

Diamond ($5,000 or more)
International Union of Crystallography

Emerald ($2,000 - 2,499)
Rayonix LLC
Rigaku Americas Corporation
Univ. of Chicago/CARS

Ruby ($2,500 - 4,999)
Agilent Technologies
Bruker AXS
Dectris Ltd.
International Centre for Diffraction Data

Sapphire ($500 - 1,999)
Area Detector Systems Corp.
Art Robbins Instruments
Blake Industries, Inc.
Yale University

Quartz ($1 - 499)
P212121, LLC
Oryx

number one for versatility and value

• 20+ years of experience in protein crystallization
• Sitting Drop
• Easy Seeding and Microseeding
• Additive Screening
• Optimization
• Microbatch
• Accuracy at high viscosity
• Minimal protein required

for a demonstration in your lab
contact hilary@douglas.co.uk

douglas.co.uk
Cryocool Gas Stream Cooler

Revolutionizing the Speed and Resolution of Data Collection for Crystallographers!

Hexamine at 10 K (LHe Cryocooler). The X-ray C-N bond length is the same as from neutron data.

Cryo Industries of America, Inc. (CIA) has been manufacturing gas cooling systems for over 25 years.

With the CRYOCOOL family of gas stream coolers we have opened new frontiers in crystallography, allowing researchers to take advantage of a product family having the widest temperature range in the market, 4.5 K to 600 K.

This innovative design features ‘Never-Ice’ technology to produce the most efficient and economical stream cooler on the market.

Warning: Once you have acquired a taste for LHe-temperature crystallography, even 90 K data collection tends to become a bit distasteful. (Warning provided by Cryocooler user)
From Papertape Input to 'Forensic Crystallography': A Short History of the Program PLATON

From the Kenneth N. Trueblood Lecture by Ton Spek

A.L. Spek is an Emeritus Professor at the Bijvoet Centre for Biomolecular Research, Utrecht University, The Netherlands

I was born 24 years later than Kenneth N. Trueblood (1920-1998) whose name is associated with the prestigious Trueblood award that I proudly received in Chicago. Notwithstanding a one generation age difference, I share with Ken doing software development during the early and adventurous days using, from the current perspective, rather primitive computing facilities. I have been fortunate to have met him and other early software developers at various meetings. In the following I will sketch my more than 40 year journey in small molecule crystallography that culminated in the development of the program PLATON that implements much of what I have learned on the way including the Shomaker & Trueblood TLS rigid-body model. PLATON in its structure validation incarnation turned out to be instrumental in the recent uncovering of a massive and saddened fraud case involving papers published in Acta Cryst. Section E. Nobody was expecting such a thing to happen on such a large scale in the non-competitive chemical crystallography world.

My scientific CV is simple: I studied, obtained my PhD and worked until my official retirement in November 2009 at the same university. Back in 1966 I started as a student in crystallography in the Laboratory for Crystal and Structural Chemistry at Utrecht University that was at that time headed by A.F. Peerdeman. Peerdeman was the successor of J.M. Bijvoet who had retired in 1962. He was co-author of the famous Bijvoet, Peerdeman & van Bommel Nature paper on absolute configuration determination. After WWII, Bijvoet had started a new laboratory in a stately house (used by the Gestapo during WWII) close to the center of the city of Utrecht. Part of the house was his private domain. After his retirement, he still kept a pied-a-terre in the former private quarters for when he was in Utrecht to look-up literature in the library for a book he was writing. As a student, I shared the family bedroom - in its double function as student room. We were expected to find a place elsewhere to work when Bijvoet was in town. The laboratory moved in 1973 to a new building in the university campus outside the city.

The Crystal Palace, as the laboratory was often referred to, was also the home of the first generations of computing platforms within the University of Utrecht (Zebra and Electrologica X1 respectively). In 1966 computing had moved to a new university computing center elsewhere in the city. Computing was from then on until the early 1970’s done on an Algol language specific X8 computer from the Dutch company Electrologica which isolated us from the FORTRAN world elsewhere. Nearly all crystallographic software had to be developed in-house. FORTRAN programs such as ORTEP and later on MULTAN could not be used. You had to be a software developer as well as a crystallographer in those days. Processing on the X8 was essentially a one job at a time operation with all input via paper tape and output over a line printer or Calcomp plotter. Computing jobs were run by an operator during daytime shifts. Most of our serious crystallographic work had to be done during the once-a-week 13 hour nightshift when we as crystallographers had the university computer to ourselves. Half of the staff and students stayed overnight to run their own jobs in turn. We scientists were all, at that time, also programmers and computer operators. A block-diagonal least squares cycle might take one hour and an E-map ten minutes. The preparation of programs and program input was done on a so-called Flexowriter. This very noisy electrical typewriter was also often used as output medium. Editing was done with a pair of scissors to cut out unwanted material from the source code or data and adhesive tape to glue a substitute into the paper tape. A lot of time was spent on optimizing memory and execution time requirements. Program and data had to fit in sixteen thousand machine words. One of my early achievements was the creation of an alternative algorithm as a practical substitute for an elegant piece of code by a professional programmer, bringing execution time down from many hours to one minute.

My supervisor, Jan A. Kanters, gave me what turned out to be an interesting assignment to work on. He handed me a batch of white crystals with unknown composition, code named M200. The assignment was to find out what the composition and structure might be, using single crystal x-ray techniques only. In hindsight his assignment very much determined the rest of my career. Preliminary investigations done with film data suggested the centro-symmetric space group P1bar. A 2D Patterson synthesis based on laboriously collected integrated zero layer Weissenberg intensity data subsequently suggested a light atom structure. This blocked any further analysis with the 2D data. Eventually a three-dimensional data set was collected with an Enraf-Nonius AD3 diffractometer that was operated via an instruction patch panel and setting angles for reflections on paper tape. The latter tape had to be created on the X8 on the basis of an orientation matrix. This was a two week data collection for an eleven non-hydrogen atom compound! It took me half a year to finally solve the structure with the 3D data assuming equal scattering type atoms. The laboratory had a tradition in Direct Methods (Paul Beurskens, Ad de Vries, Jan Kroon, Henk Krabbenb), However, all available software failed to solve my structure. These were pre-MULTAN days! In the end I had to write my own Direct Methods program that solved the triclinic structure and subsequently many other unsolved structures.
that were hanging around in the lab. AUDICE, as the program was named, was one of several Symbolic Addition Method programs that were developed in that period. Its specialty was that at the start of the evaluation of the triple product phase relations with strong indications for a positive sign, 27 symbols were assigned to strongly interacting starting reflections rather than just three as was the case in many other approaches. The number 27 is not arbitrary but represents the number of bits of X8 computer words. Eventually, by eliminating 24 symbols based on multiple symbolic ‘indications’, 8 solutions were produced with figures of merit. The structure analysis showed that the triple bond in the original dicarboxylic acid had reacted with the methanol solvent of crystallization. The crystal structure of M200 was published subsequently. Unfortunately attempts to publish the algorithms that were used in the program AUDICE in Acta Cryst. were blocked by a referee requirement that performance be compared with that on non-ALGOL (so-called real ..) platforms. That was a killer at that time. Anyway AUDICE was superseded by the program MULTAN (FORTRAN) when the University eventually moved to a multi-user Control Data FORTRAN standard mainframe in the early 1970s. The complete structure determination process that took over half a year has now been automated. M200 is solved and refined in a matter of seconds on current hardware such as my MacBook Pro with the SYSTEM-S tool in PLATON when run in the so-called No-Questions-Asked mode.

In 1971, a national single crystal service facility was set up in Utrecht, with me to make it all happen. I kept that position for 38 years until my emeritus status in 2009. The project is now continued by my former co-worker Martin Lutz. My last postdoc was Maxime Siegler, now staff crystallographer at John Hopkins University. The program PLATON is a side product of that national facility. A lot of free time went into it as a job related hobby. Its development has never been explicitly funded! Work on PLATON started in 1980 in order to manage the analysis of the growing number of structure determination projects. It was to replace an earlier ALGOL suite of programs and was designed to interface with SHELX76. The idea was to produce with a single ‘CALC ALL’ instruction an exhaustive listing of all relevant derived geometry, including ring puckering analysis, least-squares planes etc., to be handed over to our clients as a structure report. Over time numerous additional tools have been added based on our service needs, our local research and valuable ideas from external users. PLATON has become, in combination with SHELX(L/S), DIRDIF and SIR one of the major working horses of our national service.

PLATON has been purposely designed as a single program, as independent as possible from external libraries. The tools available in PLATON are shown as clickable options on the opening window of the program. Examples are ADDSYM for detection of missed symmetry, TwinRotMat for automatic twinning detection, SQUEEZE for handling disordered solvents, SYSTEM S for guided/automated structure determination, FLIPPER as a new approach for solving the phase problem and CHECKCIF for structure validation.

Reporting structures in the correct space group is a major issue. Dick Marsh has reported numerous cases where a description in a higher symmetry space group was in order. Yvon LePage published an excellent algorithm (MISSYM) for detecting possible higher symmetry elements in a structure. The actual implementation of that additional symmetry is left to the analyst. ADDSYM also implements that step and provides the proper space group name and associated transformations. In that way, the complete CSD can be examined automatically for possible missed symmetry cases. In response to one of Dick’s space group error papers, I wrote to him to ask whether he was

Multiple meetings and schools were organized in the 70’s with Direct Methods (software and theory) as the major subject. Examples are the NATO schools in Parma, Italy (above) and York (UK), the schools in Erice, Italy in 1978 (see at right), and the meetings at the Medical Foundation (Buffalo) and Gottingen (Germany). The CECAM workshops on Direct Methods in the early 70’s were important and inspiring. They were held in Orsay (near Paris) around a big European IBM-360 with lectures by Herbert Hauptman (5 weeks (!) that brought together people working on current issues related to Direct Methods). Among the participants were Gabriel Germain, Peter Main, Ricardo Destro, Davide Viterbo and Henk Krabbeendam. The program MULTAN was finalized there including interfaces to high end interactive graphics. Coming from the limited X8 & paper tape world into the multi-processing, FORTRAN and punched card world was a culture shock.
interested in my list of structures needing detailed inspection. He was indeed and was amused to find out that one of his previously published corrections was 'Marshed' again in that a still higher space group symmetry was found. The SQUEEZE tool was created to make possible the publication of the structure of a pharmaceutical that was already hard to crystallize. The structure exhibited infinite channels filled with disordered solvent. The tool consists of two parts. In the first part the solvent accessible volume in a structure is identified. In the second part that volume is used as a mask on the electron density found in that region. Iterative back-Fourier transformation of that density provides the solvent contribution to the calculated structure factors.

A busy author or referee can easily miss problems with a structure. Increasingly, black-box style analyses done by non-experts are being published. The number of referees and experts available for detailed examination of the exploding number of structure reports is quite limited. It is easy to hide problems from the experts with a ball-and-stick style illustration. Sadly, fraudulent results and structures have been identified in the literature that contaminate the assumed solid information archived in the CSD. Automated Structure Validation as a solution for this problem was pioneered by the IUCr Chester staff and strongly imposed by Syd Hall as editor of Acta Cryst. Section C and the creation of the CIF standard for data archival and exchange (Hall et al., (1991) Acta Cryst. A47, 655-685. He also encouraged George Sheldrick to adopt CIF for the then new SHELX97 refinement program. Subsequently he made CIF the Acta Cryst. Section C submission standard and set up early CIF checking procedures for submitted CIF’s. I was invited to include PLATON checking tools such as ADDSYM and VOID to search for missed solvent accessible voids. Over time several hundreds of new ALERTS were introduced on the basis of issues I detected as Acta Cryst. Section C Co-Editor. Validation was made into a standard WEB-based tool by the IUCr Chester staff and strongly imposed by the next Section Editors George Ferguson and Tony Linden. The validation scheme has been very successful for Acta Cryst. Sections C & E in setting standards for quality and reliability. The missed symmetry problem has effectively been solved for the IUCr journals though unfortunately not yet for other journals. There are still numerous ‘Marshable’ structures published as Dick Marsh keeps showing although most major chemical journals now have implemented some form of a validation scheme.

The IUCr has recently gone one step further with FCF-validation. Acta Cryst. is unique in requiring that reflection data have to be archived for published papers in computer readable format. This is standard in the bio-crystallography world but surprisingly not in chemical crystallography. When validation of the structure factor data is included then sloppy and even fraudulent practices become obvious. Errors are easily made and unfortunately not always discernable from fraud in the absence of deposited reflection data. It took some time to discover a pattern of systematic fraud. Wrong element type assignments can be caused as part of an incorrect analysis of an unintended reaction product. Alternative element types can also be (and have been) substituted deliberately in order to create 'new publishable' structures. Reported and calculated R-values differing in the first relevant digit (!?) have been detected, obviously meant to 'clean up' the validation list of ALERTS. Until recently, nobody seems to have looked seriously at the other structures published by the authors of a strangely incorrect structure. Doing so, and as part of the testing of FCF validation software, a large fraud was detected with papers published in Acta Cryst. Section E around 2007. Over 100 structures have now been retracted and marked as such in the CSD. A whole series of 'isomorphous' (often chemically impossible) structures was detected for an already published (correct) structure. The data sets of different structures could be shown to be identical. Similar series have now been detected for coordination complexes (transition metals and lanthanides).

How could referees have let those pass?

Recently, it was realized that there is an 'age-concern' issue in that many software developers are retiring with only a limited next generation. IUCr Computing Schools organized in Siena in 2005 (see below), and in Kyoto (2008) addressed this issue. Lachlan Cranswick was the major force in that project.

Finally I would like to thank the selection commission for this award; my former co-workers in the project over 38 years and in particular my successor Martin Lutz; Louis Farrugia for following my frequent updates of native UNIX PLATON with his MS-Windows implementation; the users of the software for communicating new ideas and bug reports; Lachlan Cranswick, who sadly is no longer with us, for promoting my software, and my wife for enduring me with my notebook.

Ton Spek

From left: Ton Spek, Tony Linden (current Section Editor of Acta Cryst. C), George Ferguson (previous Section Editor), and Aggie Spek in Zurich.
The Puzzle Corner column introduced on page 19 of the Winter 2010 issue of ACA *RefleXions* invited/challenged readers to identify a participant at an international crystallographic meeting held in the 1960’s or 70’s. The unknown was third on the left of a photograph thought to have been taken at an IUCr related gathering in the USSR, as it was then, or a related eastern European country. The resulting lack of response was possibly related to the combination of decades passed since the photo was taken together and the international nature of those present, resulting in too difficult a choice.

We now offer a group photo taken much more recently at an ACA meeting – the editors think they know all the names, but not when or where. Readers might find it amusing to name the participants also (we promise to publish the names in the next issue). Your answers will have lasting institutional value in addition to any diversion they might provide because many photographs in the ACA archives presently contain unidentified participants that we hope you will identify.

On page 37 of the winter 2010 *RefleXions*, the twelve faces above were printed, without names, as a puzzle-challenge for readers. The editors knew some, but not all of the names. Their names are (l to r) : Amy Sarjeant, Thomas Proffen, Donnie Berkholz, Donald Raymond, George Oh, Branton Campbell, Jennifer Gehret; below: Elena Zlateva, Ju He, Donnie Berkholz, Nicholas Deifel, Balendu Avvaru. All these photos were taken at the Poster Sessions in Chicago.

On page 42 of the winter, 2010 *RefleXions* the eleven faces below were printed, Their names are: top row, (l to r): Luchita Doucette, Mario Rosa, Krystal McLaughlin, ???, ???. 2nd row, l to r: ???, Ritcha Mehra-Chaudhary, Argentina Becker, ???, ???, ???. All these photos were taken at the Mentor-Mentee dinner in Chicago.

Two additional puzzles were submitted by Edgar Meyer:

≈ Name the last crystallographer to appear in a Hollywood movie.

≈ Which science fiction book references Martin Buerger’s *X-Ray Crystallography*?

With the kind agreement of the BCA’s *Crystallography News*’ Puzzle Corner editor, Carl Schwalbe, the following is a reprint of their March 2009 puzzle.

Sometimes a person’s name is turned into an adjective. Mathematicians, physicists and musicologists seem particularly keen to do this, and “-ian” is the usual ending. It may be applied as a simple suffix as in Bohm - Bohmian; Freud - Freudian; Keynes - Keynesian; Lagrange - Lagrangian and Laplace - Laplacian:

Sometimes when this happens the accent is changed; for example Darwin - Darwinian or Mozart - Mozartian

And sometimes, along with the change of accent, the pronunciation of the final vowel is lengthened as in Abel - Abelian; Beethoven - Beethovenian; Hamilton - Hamiltonian; Mendel - Mendelian or Wagner - Wagnerian.

Or -- the adjective may end with -c instead of -n as in Galvani - Galvanic; Napoleon - Napoleonic; Ptolemy - Ptolemaic and Volta - Voltaic.

Crystallographers don’t seem to do this. We discuss Bohmian interpretations of quantum mechanics but not Braggian interpretations of diffraction. We use the Hamiltonian to calculate our wave functions but not the Pattersonian to calculate our vector maps. So we ask our readers:

(1) Can you name any crystallographers-turned-adjectives?

(2) Can you name other important people-turned-adjectives, especially if their suffix has a different structure?

(3) Can you formulate rules for the whole business?

The answers to all puzzles, or at least the ones the editors know, will be in the summer issue of ACA *RefleXions*.

Sidney Abrahams

The editors welcome puzzle responses. Please contact Judith Flippen-Anderson, acareflexions@gmail.com or Connie Rajnak, conniechidester@earthlink.net. Thanks from the editors to Frances Bernstein, who supplied many of the answers to our winter issue puzzles.
mosquito®

the worlds number one

mosquito LCP
- Full mosquito Crystal
- Auto homing LCP disp.
- Highly accurate drop p.

mosquito Crystal
- Accuracy at high viscosity
- Seeding and microseeding
- Unrivalled ease of use

Worldwide specialists in soluble and membrane crystallography
You have solved a new structure. How do you describe it to a non-scientist? A few key words are necessary: atoms, bonds, shape, size - but they are not sufficient. You need to show a picture or model - this implies an artistic representation.

Science is material - art is spiritual. Both are profoundly creative, peering into the depths of nature and of the soul. The scientist-artist must strike a balance, first for him/herself, then for the viewer. And how many ways are there to describe a molecule, an atom? Overlapping wave functions? Electron density maxima? Sum of van der Waals radii? Connectivity? Chirality? Iconic abstractions? A confluence of spheres? While graphical representations are visually appealing, their lifetime is limited and devoid of the sense of touch. Sculptures are the answer, but herein lay distinct challenges; it also takes courage to make a scientific sculpture.

Max Perutz was not pleased with the worm-like shape of the backbone chain in the first myoglobin structure (“hideous”) but observed “like many other things in nature, myoglobin gains in beauty the closer you look at it”; aesthetics are part of our heritage. Someone referred to a protein structure as looking like a lumpy potato. But then, compare a lumpy de Kooning sculpture to a polished Brancusi; some of Jean Arp's sculptures appear 'molecular'; other examples may come to mind.

Often, the artist does not know how the art-piece will be received; an internal aesthetic balance of complexity and simplicity is essential. The crystallographer who spent years on a structural study may take umbrage at an artist's necessarily simplified representation. While a small rotation can give a graphical image a different appearance, the sculpture can be inspected; an enduring sculpture can be inspected, touched.

The least of our structures enforces the edifice of the scientific literature, occasionally yielding information initially overlooked in publication. In context, even our best structures are deposited and reprints safely filed, seldom to be seen by the general public. Imagine then how your most significant structure could be sculpted and displayed for the world to see, ponder, and yes, admire. *ars longa - vita brevis.*

These sculptors, with different media and emphases, make sculptural images of molecules to bridge the gap from illusion to reality; see if you like their art.

Bathsheba Grossman

CrystalProtein.com makes protein structures by 3D laser etching in glass blocks. This technology, more familiar as souvenir cubes, is a surprisingly neat hack for rendering intricate data, producing beautiful handheld models of proteins and other subjects. I began by laser etching sculpture designs but soon found that scientific imaging was a more compelling use of the medium, and as I learned more about proteins and adapted my software to work well with them, I found some demand for this as a customized service. Now it's about 1/3 of my sculpture business, my assistant knows enough about protein imaging to be mistaken for a postdoc, and we're very happy to be able to make these models available. http://bathsheba.com

Mara Hazeltine

My work explores the explosion of information that has occurred since the advent of computerized bioinformatics. I have used many molecular structures that come from data gleaned from electron microscopes or x-ray crystallography. I use digitized data from these structures to fabricate my sculptures by means of stereo-lithography, rapid prototyping, and 5-axis milling. These modern techniques are augmented by traditional sculpting methods such as the ancient lost wax method in bronze, and Japanese garden design. My most current projects use environmental technology to combine minute structures from the nano-world in such a way that a living eco-system of functional underwater sculptures is created.

www.calamara.com
http://www.thewip.net/contributors/2010/05/geotherapy_artist_mara_haselti.html

Contributors:

Bathsheba Grossman
Mara Hazeltine
Julian Voss-Andreae
Byron Rubin
Edgar Meyer

[Estrogen Revealed detail; triple embedment stereolithography and caste arcylic, 9" x 3" x 3", 2007.](http://bathsheba.com)
Julian Voss-Andreae
My work explores the nature of life through art. My protein-based works, inspired by life's molecular building blocks, recreate the emergence of three-dimensional bodies from one-dimensional DNA. Utilizing an algorithmic approach as the point of departure, I follow my artistic vision freely to create sculptures that facilitate a broader understanding of nature than the one provided by science alone, and that help to reestablish the Renaissance notion that the natural sciences constitute an integral part of culture.

www.JulianVossAndreae.com

Angel of the West, commissioned as the signature piece of the new Scripps Research Institute's campus in Jupiter, FL, is a large-scale sculpture based on the structure of the human immune system's key molecule, the antibody.

Byron Rubin
I make anatomically correct models of proteins, DNA, RNA and small molecules that aptly are described as molecular sculptures. These metal sculptures are rendered in a variety of styles at scales from desktop to monumental for either indoor or outdoor installation. The photo at right shows a recent sculpture representing the antibiotic drug, Zocin®. The antibiotic is a combination of two β-lactam molecules. Each is represented in metal as a gold ball and stick model, mounted on a 44 inch high, cherry display case. The sculpture is 16 inches in height. http://www.molecularsculpture.com

Edgar Meyer
Moving from studying small molecule structures to proteins, I struggled with conceptualizing and visualizing these and other structures in 3-D. After the thrill of watching a new structure emerge from electron density maps, I strove to depict the beauty I saw and felt. Nearing retirement, I was inspired to carve models of molecules in noble hardwoods, so I wrote programs to drive a cnc milling machine. Two museum commissions, especially the polio virus bronzes commissioned by the Smithsonian, helped. Recently, I have been placing images of molecules onto photos of flowers or landscapes and have been using a 7-axis rapid prototyping robot to create precisely scaled bronze sculptures of molecules, thus striving to place man-sized sculptures in public spaces. http://molecular-sculpture.com/

Now, judge for yourself; the variety of images is striking, representing the tip of the iceberg from these sculptors. Numerous choices (materials, design, execution, finishing, exhibition) are just part of the artistic component of molecular representations. Technical skill and artistic detail must be matched with scientific sensitivity; Snow's 1959 Rede “Two Cultures” lecture continues to challenge sculptors. Even as we live in the “golden age” of structural biology, let us find ways to exhibit vital nano-scale objects as old as life itself in forms as contemporary as tomorrow.
Using food and cooking to teach science to a wider audience is a growing trend since the appearance of the Food Network. The network draws 44 million viewers to its cable shows and its website posts 2.8 million unique visitors a month, so there is a ready-made audience for science education in the context of food. For those unfamiliar with the topic, the science of cooking is not about nutrition food safety. Rather, it falls under the discipline of molecular gastronomy, a scientific approach to cooking pioneered by French physical chemist Hervé This and Hungarian physicist Nicholas Kurti. A science of cooking course can be very chemistry oriented and multidisciplinary in nature.

Asmorgasbord of courses: There are many examples of courses that successfully utilize the science cooking to teach students chemistry, molecular biology and physics. One of the first courses to combine food and science was taught at MIT and titled *Kitchen Chemistry*. That class, created by Patti Christie, was taught in a small seminar format and combined hands-on cooking with current scientific literature. In a similar course taught at Harvard University, top chefs are brought into the classroom to present molecular cooking to undergraduates. This course teaches about gel foams and the molecular nature of *haute cuisine*. Marcia France at Washington and Lee U. teaches a course that covers science basics in lecture and takes students on field trips to restaurants and vineyards. Brenda Kelly and Brandy Russell at Gustavus Adolphus College teach a four-week course that involves laboratory experiments and covers a wide range of materials from oxidation of food to food color and fermentation. While many of these courses incorporate laboratories into their pedagogical approach, Deon Miles and Jennifer Bachman at Sewanee had a good experience teaching the science of cooking in a lecture-only format.

Joseph Provost

Adapted from the March 2011 issue of ASBMB.

"Okay - is there anybody ELSE whose homework ate their dog?"

Editors note: Page 20 of the winter 2010 *RefleXions* included a book review by Joe Ferrara, *Cooking for Geeks by Jeff Potter*, which also linked chemistry to cooking.

Cartoon, "The Humpback of Notre Dame" courtesy of Nick D. Kim. See page 3.

Rigaku is proud to introduce the ...

BioSAXS-1000

- Optimized for biological samples
- Compact size easily fits in existing lab space
- Patented optical design maximizes flux at sample and eliminates the need for data de-smearing
- Most samples can be collected in under one hour

Easily mounted on an open port of a Rigaku rotating anode X-ray source, the BioSAXS-1000 brings the power of SAXS into your everyday structural biology workflow.
A scientist who enlisted Britain's hairdressers in the early hunt for DNA has emerged from the shadows, with a museum exhibition, a blue plaque and a place in the BBC's History of the World in 100 Objects.

William Astbury, a brilliant popularizer who also used poached eggs and pigs' ears to gain public interest and funding, took the first x-ray photographs of the "building bricks of life" 15 years before the work of Franklin, Watson and Crick. Long acknowledged by experts, his role was sidelined in the subsequent celebrations, despite a style that endeared him to laymen as well as the elite in the new science of molecular biology.

While laying the foundation of DNA studies, he was corresponding with salon owners such as Muriel Smith of Leeds, a prizewinner at the World Permanent Wave Championships. Their shared interest was the then fashionable kink in women's hair whose molecular properties were part of Astbury's specialist field. Originally hired by Leeds University to investigate textile fibres, his fascination with their protein structure revealed how molecules change shape when heated and stretched. This discovery was central to perming, because the method fixed significant molecular changes which otherwise returned to normal when the hair cooled and shrank.

The helical shape of hair proteins discovered by Astbury later also proved to be the secret of DNA. "He got pretty close, but there were aspects to the DNA puzzle which he could not have solved in 1938," said Bruce Turnbull, a Royal Society University Research Fellow in chemistry at Leeds's Astbury Centre for Structural Molecular Biology, named in the scientist's honor.

It was not realized at the time that DNA's "building blocks" came in pairs, while the complexity of the helix was disguised as cross-like shapes in x-ray photography. "Later scientists built on his work and his 'pile of pennies' description of DNA was not so far from the answer they correctly described, the double helix," said Turnbull.

The implications of his findings were prophetically described by Astbury's brilliant assistant Florence Bell. She wrote in 1939: "Possibly the most pregnant recent development in molecular biology is the realization that the beginnings of life are clearly associated with the interaction of proteins and nucleic acids."

Astbury's revived reputation follows a Royal Society initiative to honor "local heroes", which led to an exhibition at the Thackray medical museum in Leeds that ended 2nd January. Hair Splitting Images - How William Astbury's X-Ray Vision Changed the World coincided with the BBC's choice of Astbury's x-ray camera in its 100 objects, and a Leeds Civic Trust plaque which was unveiled 26th Nov., 2010.

The trust's director, Dr Kevin Grady, said: "Leeds University was originally founded to further understanding of the study of textiles. Isn't this a remarkable example of where such an initiative can unexpectedly lead?"

Astbury's mastery of fiber structures led to a pursuit of proteins in scores of fields - including poached eggs, where his work on how molecules change shape under heat remains important in today's research on Alzheimer's and Parkinson's diseases. "He was brilliant on making connections between similar proteins in things which seem impossibly different," said Jim Garretts, senior curator at the Thackray. "He showed how a sow's ear could become a silk purse, made a coat out of peanut fibres and speculated about a day when viruses could be turned into clothing, through work on their protein structures."

Astbury's easy manner may have owed something to his background as a potter's son from Stoke-on-Trent. He would have entered that industry had not scholarships taken him to grammar school and Cambridge University. His lecture on perms to Muriel Swift's adult academy of hairdressing, part of the Leeds Guild of Hairdressers, Wigmakers and Perfumers, was part of a system of keeping in touch with the outside world, as much as with academic papers.

"Crystal handling just got easier."

The world's most advanced tools for protein and small molecule crystallography. www.mitegen.com
Robin Rogers wins ACS Award

The American Chemical Society will honor Robin D. Rogers, U Alabama, with their 2011 Award in Separations Science & Technology, which recognizes the development of novel applications with major impacts and/or the practical implementations of modern advancements in the field of separation science and technology. Rogers serves as Robert Ramsay Chair of Chemistry, Distinguished Research Professor, and Director of the Center for Green Manufacturing at the Department of Chemistry at the University of Alabama. His innovation, foresight and influence in the field of separation science is evident in the numerous patents he holds and hundreds of publications he has authored. A pioneer in the use of ionic liquids and green chemistry for sustainable technology, Rogers’ seminal findings on ionic liquid/aqueous partitioning kick-started interest in applying ionic liquids to clean separations. One of the many diverse focuses of his research group is in developing novel strategies for the separation and purification of value added products from biomass, thus reducing energy usage and cost and improving economic viability. Rogers is also founding Editor-in-Chief of Crystal Growth & Design.

Administered by the ACS, the Award in Separations Science & Technology is sponsored by Waters Corp. Rogers will receive the award at the Awards Ceremony on Tuesday, March 29, 2011, in conjunction with the 241st ACS national meeting in Anaheim, California, where he will also deliver a lecture at the annual Division of Industrial and Engineering Chemistry Separations Science and Technology Symposium.

Chan, Ealick, and Gschneidner elected as AAAS Fellows

In December, the Council for the American Association for the Advancement of Science (AAAS) elected 503 members as Fellows of AAAS. A Fellow is defined as "a Member whose efforts on behalf of the advancement of science or its applications are scientifically or socially distinguished." Among the new Fellows were three ACA members: Michael Chan (Ohio State) and Steven E. Ealick (Cornell) in the Chemistry Section and Karl A. Gschneidner, Jr. (Iowa State) in the Physics Section.

Michael Chan, Professor of Chemistry and Molecular & Cellular Biochemistry, is also the Interim Chair of Biochemistry. His research interests include pyrrolysine-containing proteins, proteins involved in carbon dioxide and methane degradation, membrane-inserting proteins, and bioinformatics.

Steve Ealick is William T. Miller Professor and Director of the Northeastern Collaborative Access Team (NE-CAT) at Cornell University. He studies enzymes involved in purine nucleotide metabolism and pyrimidine nucleotide metabolism, and enzymes involved in thiamin, polyamine, and purine biosynthesis. His group is also involved in the development of tools and techniques associated with synchrotron radiation.

Karl Gschneidner is the Anson Marston Distinguished Professor of Materials Science and Engineering, Senior Materials Scientist in the Ames Laboratory of the US Department of Energy, and Senior Editor of the Handbook of the Physics and Chemistry of Rare Earths. His research focuses on the alloy theory of metallic systems and the physical metallurgy of the rare-earth elements.

The three were recognized with the other Fellows for their contributions to science and technology at the Fellows Forum in February during the AAAS Annual Meeting in Washington, D.C. The new Fellows receive a certificate and a blue and gold rosette as a symbol of their distinguished accomplishments.

ICDD Awards now include ACA membership

Established in 1991 by the International Centre for Diffraction Data, the Ludo Frevel Crystallography Scholarships, (www.icdd.com/resources/awards/frevel.htm), are awarded yearly to encourage promising graduate students to pursue crystallographically oriented research. All applicants are required to be enrolled in a graduate degree program during the calendar year for which they are applying, with a major interest in crystallography, e.g. crystal structure analysis, crystal morphology, modulated structures, correlation of atomic structure with physical properties, systematic classification of crystal structures, phase identification and materials characterization. Multiple recipients are selected on a competitive basis, each receiving $2,500. For the first time, this year, the award also includes a one year membership to the ACA. Sadly, Ludo Frevel passed away on 15th January, 2011 (see the obituary on page 17).
2011 ICDD Award Winners

Sharon Bone, U California, *X-ray Absorption and Scattering Analysis of Hg Sorption by Nanocrystalline FeS.*

Honghan Fei, U California, *Solvothermal synthesis of cationic framework materials, including zeotypes, inorganic extended materials and cationic metal-organic frameworks.*

Hua He, U Delaware, *Single-crystal and high resolution powder x-ray diffraction studies on new antimonides with layered and framework structures.*

Zachary Hudson, Queen’s U, Canada, *Triarylboron Compounds for Optoelectronic Materials: Applications in Solid-state lighting and chemical sensing.*

Shmuel Samuha, Ben-Gurion U of the Negev, Israel, *Characterization of the Structure of a New Ternary Phase in Al-Ru-Rh system.*

Pradeep Sharma, All India Institute of Medical Sciences, India, *An approach towards prevention of septic shock syndrome: Structural and functional studies of PGRP and its complexes with various PAMPs.*

Chutchamon Sirisopanaporn, Universite de Picardie Jules Verne, France, *Crystal Chemistry and Electrochemical properties of Lithium Transition Metal Silicates; Li2MSiO4 where M are Fe and Mn.*

Vedran Vukotic, U Windsor, Ontario, Canada, *Development of new materials which have application in non-linear optics, ferroelectronics, piezoelectrics, and other technologically important physical properties.*

The deadline for the next competition is October 26, 2011: www.icdd.com/resources/awards/frevel.htm.

I don't know what I was thinking when I picked this book up. It is a set of twenty-five essays on how religion has not negatively impacted science. The fourth myth “That Medieval Islamic Culture Was Inhospitable to Science” seemed to have the properties of what I understand to be true so I thought there was promise. Myth 7, “That Giordano Bruno was the First Martyr of Modern Science” just about drove me mad.

The essayist, Jole Shackelford, makes the following arguments that debunk the myth. If you remember, Bruno was a priest who adopted the Copernican view and taught that the earth might not be the only planet with life, among other things. He was burned at the stake for this. Shackelford suggests that Bruno wasn’t the first scientist martyr because he wasn’t a scientist, that this form of capital punishment was common practice anyway, and finally, that he was a priest and the Church could do what it wanted with him.

The essays give the appearance of being well researched but I felt as if I were reading a skit by a partisan political pundit purporting to provide a fair and balanced viewpoint.

Moving on to - in my humble opinion - a far more interesting book:

From a technical perspective this book is a relatively easy read. It has lots of good pictures and no math, except a definition of π similar to the Indiana legislature’s old value. However, don’t be fooled, as the philosophical implications are profound. The authors start by introducing the question of why does the universe behave the way it does. Next they pass through history and the development of the laws that we think describe the behavior of the universe: Aristotle’s, Newton’s, Einstein’s and Feynman’s theories, then string theory and ultimately M-theory, which is a combination of all the theories necessary to describe the behavior of the universe. The difficulty arises in the concepts of free will and causality.

Do we, as human beings, our brains driven by chemical reactions (which are further described by quantum fluctuations in our brains),
The Grand Design, cont’d

have “free will”? Is my typing of this document a series of random probabilities? The other mind bender is the idea that observing an event forces the path of the event to become evident. In other words, observing the present impacts the past. I first came across this concept five years ago in Davies’ Cosmic Jackpot. It still does not sit well.

I saw this book at the store and bought it for my wife. We had both read and enjoyed an earlier book by the same author, Zero, and I expected this to be just as good. It was better – it is also the first “math” book I have ever read that made me laugh out loud. In all seriousness though, what it does is lay down a basis for interpreting mathematical information in the correct context. As crystallographers, this should be very familiar to us.

But, this ability to interpret numbers applies to society in general, not just scientific inquiry.

Seife defines proofiness: “the art of using bogus mathematical arguments to prove something that you know in your heart to be true – even when it’s not”. He then cites numerous examples of proofiness that you and I have both experienced in our lifetime.

In Chapter 1, “Phony Facts, Phony Figures” Seife defines dis-estimation: “the act of taking a number too literally, understating or ignoring the uncertainties that surround it” and provides several examples. In addition he demonstrates the problem with fruit picking data to give the answer one desires.

Chapter 2, “Rorschach’s Demon”, Seife defines causuistry “where the fault in the argument comes from implying that there is a causal relationship between two things when in fact there isn’t any such linkage” and randomness in which one insists there is order when there is only chaos”. Again examples are given, most from Nature and one from the Wall Street Journal.

Chapter 3, “Risky Business” takes a look at understanding risk. The shuttle program and air traffic safety are one example. If the aviation industry had the same record as the shuttle program there would be 275 airplane crashes a year. This chapter also summarizes nicely the Enron affair and the current financial mess we are in now.

The next two chapters, “Poll Cats” and “Election Dysfunction” (not a typo!) are very interesting. The former chapter introduces random and systematic error, and how they bias the results of polls. The latter chapter analyzes the 2008 Minnesota Senate election which resulted in a recount in favor of Franken over Coleman, which was really quite humorous, and the 2000 Bush vs Gore recount in Florida. In the end, Seife suggests that the counts in Florida were much too close and a flip of a coin would have adequately reflected the will of the people.

Chapter 6, “An Unfair Vote” should upset you. It details the process of gerrymandering and how redistricting of the type that dilutes the will of the people will happen with the publication of the 2010 census.

Chapter 7, “Alternate Realities” looks at how lawyers and judges are able to turn numbers upside down to win cases that would make no sense to anyone who actually paid attention to the numbers. The O.J. Simpson trial is given as one example of how lawyers confuse juries with bad statistics.

The last Chapter, “Propaganda by the Numbers” is quite interesting. Here Seife reviews the string of victories in Viet Nam that led to the US pullout and why buying a Hummer 3 is greener than buying a Prius.

Three appendices, “Statistical Error”, “Electronic Voting” and “The Prosecutor’s Fallacy” supplement the main text with detailed discussion on the particular topic.

My wife says “believe nothing you hear and only half of what you see”. This book will help you decide which half of what you see to believe.

Joseph Ferrara
ACA 2011 May 28 - June 2
Sheraton, French Quarter, New Orleans

Abstract Deadline: The early deadline has passed but late abstracts are still being accepted

Advance Registration Deadline: March 31, 2011
Advance Hotel Registration Deadline: April 15, 2011
Register online and see Call for Papers at www.AmerCrystAssn.org
Meeting website: www.AmerCrystAssn.org

Program Chair
Chris Cahill
George Washington University
cahill@gwu.edu

Local Chairs
Ed Stevens
University of New Orleans
504-280-6856
estevens@uno.edu

Cheryl Klein-Stevens
Xavier University of Louisiana
504-520-7377
cklein@xula.edu

Poster Chief
Ilia Guzei
U Wisconsin

Chief, Group Photos of Session Speakers
Victor Young
U Minnesota

Photo on right courtesy of the New Orleans Saints: Superbowl Saints: WhoDatDish©

Photo at left courtesy of the City of New Orleans: Alligator Lurking©.
Workshops

Symmetry-mode Analysis
Organizer: Branton Campbell

Introduction to PHENIX for Beginning to Advanced Crystallographers
Organizer: Paul Adams

Award Symposia

Patterson Award in honor of Keith Moffat

Margaret C. Etter Early Career Award
in honor of Yurij Mozharivskyj
Organizer: Jamaine Davis

Transactions Symposium

Time Resolved Photochemistry and Electron Density
In Honor of Philip Coppens on his 80th Birthday
Organizers: Peter Lee, Yu-Shang Chen
and Jason Benedict

Evolution of Powder Diffraction Software
in Honor of Lachlan Cranswick
Organizer: Peter Stephens

Plenary Lecture

Ned Seeman - Winner of the 2010 Kavli Prize in Nanoscience

Banquet Speaker

Elizabeth Wood Award Honoree: Daniel Nocera

Travel Fellowships for XXII IUCr Madrid Congress,
22-31 August 2011.

This year the USNCCr will be continuing it’s tradition of providing travel fellowships for young scientists (students, post-docs, and untenured faculty) to attend the triennial IUCr Congress. Applications for travel assistance to the Madrid Congress were due by March 1, 2011 and are currently under review. Successful applicants will be notified in time to meet advance registration deadlines. Recipients will be expected to submit a short report on their experiences at the Congress that will be published in an issue of ACA RefleXions.

NOTE: LATE ABSTRACTS FOR ACA NEW ORLEANS STILL BEING ACCEPTED
www.AmerCrystalAssn.org
APRIL 2011
25-29 MaThCryst School on Fundamental Crystallography, Mahdia, Tunisia.

MAY 2011
21-26 ACA 2011, Sheraton Hotel New Orleans, New Orleans, LA. Program Chair: Chris Cahill; Local Chairs: Cheryl Klein-Stevens & Ed Stevens.

JULY 2011

AUGUST 2011

JULY 2012
28-August 1 ACA 2012, Westin Boston Waterfront Hotel, Boston, MA. Program Chairs: Bruce Foxman, Brandies Univ., foxman1@brandeis.edu, and Bruce Noll, Bruker, Bruce.Noll@bruker-axs.com NEW Sessions will begin on Sunday, July 29, and conclude on Wednesday, Aug. 1

SEPTEMBER 2012
9-13 EMC 2012, European Mineralogical Conference, at Johann Wolfgang Goethe-University, Frankfurt, Germany.
Complete Automation for Protein Crystallization

Desktop and High Throughput CrystalMation™ Systems

Leading With Innovation

CrystalMation: From Chemicals to Crystals

Flexibility for interactive research scenarios: Desktop CrystalMation

- Automate repetitive tasks
- Generate more results with precise, repeatable workflows
- Compact: fits on two lab benches

When throughput matters:
High Throughput CrystalMation

- Create high output of protein crystals
- Reduce time-consuming manual labor
- Used by some of the largest high throughput facilities worldwide
Dual Source
Proven Success

Agilent Technologies continues to lead the way in dual wavelength crystallography with more than 100 systems installed worldwide. The Agilent SuperNova features:

- Dual 50W Mo and Cu microfocus X-ray sources
- Large area Atlas or highest sensitivity Eos CCD detector
- Agilent AutoChem, automatic structure solution and refinement software
- Compact, low maintenance design

www.agilent.com/chem/acanews
Contact us: xrdsales@agilent.com